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Abstract

We discuss recent evidence that B, Mandelbrot's proposal to model market
Iuctuations as a Lévy stable process is adequate for short enough time acales,
mossing over to A Brownian walk for larger time scales. We show how the
easming of Black and Scholes should be extended to price and hedge op-
dons in the presence of these ‘extreme’ fluctuations. A comparison between
:hearetical and experimental option prices is also given.
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L INTRODUCTION

The efficiency of the statistical tools devised to address the problems of security pricing
and portfolio selection strongly depends on the adequacy of the stochastic model chosen o
describe the market Auctuations. Historically, the idea that price changes could be modelled
as a Brownian motion dates back to Bachelier [1]. This hypothesis, or some of its variants
(such as the Geometrical Brownian motion, where the log of the price is a Brownian mo-
tion) is at the root of most of the modem results of mathematical Gnance, with Markowitz
portfolio analysis, the Capital Asset Pricing Model (CAPM) and the Black-Scholes formula
[2] standing out as paradigms. The reason for suceess is mainly due to the impressive math-
ematical and probabilistic apparatus available to deal with Brownian motion problems, in
particular lbo's stochastic caleulus.

An important justification of the Brownian motion description lies in the Central Limit
Theorem (CLT), stating that under rather mild hy pothesis, the sum of & elementary random
changes is, for large N, a Gaussian variable. In physics or in finance, where these changes
oecur a8 time is evolving, the number of elementary changes observed during a tinme interval
tis given by N = f where v is an elementary correlation time, below which changes of
velocity (for the case of a Brownian particle) or changes of *trend’ (in the case of the stock
prices) cannot occur. The use of the CLT to substantiate the use of Gaussian statistics then
requires that ¢ % r. In financial marlets, © cannot be smaller than a few seconds which
is not that small compared to the relevant time scales (days), in particular when one has
to worry about the fails of the distribution, corresponding to large shocks (crashes). The
Bladk-Scholes model and many subsequent developments suppose that + =0, which enables
one to use ILo's stochastic caleulus.

Finite values of A thus lead to corrections to Gaussian statistics which one would like
to estimate and control. There are however other cases where the Brownian motion model
[aila, even when + =+ 0. These cases occur either when intertemporal correlation cannot
be neglected (the ‘fractional Brownian motion’ [3] is an example) or when fuetuations are
g0 strong that the second moment of the distribution is infinite — leading to Lévy statistics
and stable laws. There is quite a large amount of work making a case for the use of Lévy
distributions in finance, starting by B. Mandelbrot’s famous 1963 study of coton prices [3.4].
As we shall arpue, we believe that the situation is more complicated (as in fact forseen
by Mandelbrot himsell}. In short (but see below), price changes seem to be Lévy-like for
short enough time lapgs and become more amd more Brownian as time grows. The erossover
time 7 between the two regimes depends on the market (currencies, major stock indices,
emerging markets..) and is typically a few days for currencies.

The aim of this eontribution is first to summarize various important properties of power-
firw tailed distributions, which encompass Lévy stable laws, We then review recent empirical
evidence for the ‘mived” behaviour alluded to above, which we shall refer to as the * truneated”’
Lévy process. We shall then present a theory for option pricing and hedging in the caseof a
genuine Lévy process, and finally summarize the theory of option pricing for a general proocess
with a fnite varianee (but not necessarily Gaussian). In both these cases, perfect hoedging is
in general impossible, but optimal strategies can be found (analytically or numerically) and
the associated residual risk can be estimated — leading to option pricing formulae containing
a sk premium,



IL A FEW RESULTS ON POWER-LAW /LEVY DISTRIBUTIONS

We shall denote in the following the value of the stock at time ¢ a8 x(t), and & the
variation of the stock on a gven time interval Ad: & = 2t + At} — z(t). The probability
density of 8 is supposed to be of the form:

a#
W)= fe GlwE (1)

where p is a certain exponent describing how [ast the distribution decays to zero, and 87
an upper cul-off value bevond which p decays much faster, say exponentially — see below.
These power-law distributions are scale mvariand (when 6" = o¢), in the sense that the
relative frequency ':!j[%; is independant of the chosen scale d. For p < 1, the average of 4 is of
order E{8) =~ &8 “: and is thus infinite when & = oc. Similarly, when p < 2, the second
moment i of order E(8%) =~ &8 *# and also diverges when 8% = o, More generally, only
moments E(8) such that i < p give information on fypical Quctuations which are of order
8.

Where do these power laws come from 7 A large number of physical systems actually
exhibit truncated power-law distributions of the form given in Eq. (1) [5]. These systems are
called ‘critical’ because they are close to (87 large) or right on an instability point (§° = oc).
A well known example 15 the pereolalion problem, where the size of the connected clusters
become power-law distributed close to the percolation point [6]. Another trivial example is
the probability of first return to the orpgin after a time ¢ for a (one dimensional) random
walk, which decays as t=*2 (or p = 1/2). More interesting for financial applications are
the models exhibiting ‘Self Organized Criticality’, that is, sponlaneously evolving towards a
critical point [7]. Models of avalanches, earthgquakes, crack propagation, ete.. have been the
subject of intense study in the recent physical literature, and might be relevant to deseribe
bubbles and crashes in the financial markets [8].

Let us now deseribe afew remarkable properties of power-law distributed variables. Much
more precise mathematical statements can of course be given [9)- we deliberately restrict
here to a qualitative discussion of the salient features which are useful to our purpose.

o Erlreme values (“Range’). 1T a set of N of these variables is considersd, than the largest
value encounterad is of order:

Smax = MAX[ 8y, Sz, ereer iy} 6 SN &, (2}

Nobe that 8., grows [aster for smaller p's, s expected intuitively.
& Rank Ordering. More generally, if one orders these N varables according to their rank,
RS
Y1) = dmax, ¥(2) = Smax -1, oo YN} = b,
one obtaing the following order of magnitude for yi(n):

() o 8ol ). €

This property is actually very useful for empirical characterization of the tailof adistribution



& Sums (Total return of a portfolio containing N shares, variation of price over N days,
ete.). The order of magnitude of the sum of N independent power-law variables is given

bay™:
al N E(4) ifps>1
‘Q‘E&“{Hiz@m! ifpel (4)

Note that when p < 1, the whole sum is of the same order of magnitude as the largest of
its terms. This is the most striking aspect of these wildly Huctuating situations which one
should keep in mind: few events (rare but important ) completely dominate the phenomenon.
If p = 1, on the other hand, the sum is ‘democratic’: all elementary moves contribute equally
b the overall mowve.

More precisely, when p < 1, one should rescale 5 a8 u = f}_- The lirmiting distributicn
of u for large N is then a symmetric Lévy stable law Lplz-u] Il:g:ntral.ixj.ng the normal Law )
[@]. An important property of Ly(u) is that it decays for large « precisely as the elementary

distribution p (Eq. (1)) L, (u) = WF*: For 1 < p< 2, the mean value = E(8) i3 finite,
and one should consider the rescaled varable « = £ v’;”. Again, the limiting distribution of

u is a Lévy stable law [9]. When p > 2. one recovers the usual CLT: the rescaled variable
S=1ni

u= S becomes Gaussian for large N,
However, it should be emphasized that, for any value of p €]0, oc[, the sum 5 of indi-
vidual power-law variables 4§, all distributed as in Eq. (1), but with possibly different ‘tail

amplitudes’ ;= &, is also a power-law variable with a tail amplitude O given by

N
c=3 0. (5)

This tail amplitude generalizes the property of the variance, which is additive for independent
random variables. The distinction between the cases p < 2o0r g > 2 lies in the fact that the
total welght contained in these power-law tails remain finite in the former case, and decays
Lo 2ere (a8 L:.:E] in the latter case, ‘eaten up’ by the Gaussian distribution.

- Ti'urm!ﬂ.lf I,t.uwcr—!uw.a IF the power-law distribution only extends up to a ‘eut-off" or
crossover value 87, then all the above statements remain qualitatively valid when N is not
too large. The simple criterion consists of comparing the order of magnitude of the largest
term encountered dpe (V) and 87, IF &pau(N) <€ 8, or equivalently if N < N° = (£,
then the previeus statements apply. Sums of these truncated power-laws will (foe g < 2)
firat approach a Lévy stable law, am then realize that they are in the attraction basin of
the Gaussian for N = N [10] - this is graphically represented in Fig. 1.

L LEVY DISTRIBUTIONS AND MARKET FLUCTUATIONS

As stated in the introduction, reliable estimates of e.g option prices require one first o
adopt a faithful representation of reality. How faithful is a Lévy process description T This

“The cases =1 or £ are special: logarithmic corrections need to be included [9)
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is a much debated issue since Mandelbrot's seminal proposal [4,3,11], with pros and cons
which we now summarize,

A point on which everybody agrees is the fact that the kurtosis ool Eray 18 always larger —
sometimes much larger — than the Gaussian value of 3. This strong ic;JLﬂku.rLlﬂLJ. revienls
the existence of fat tails, i.e. crashes which would be exceedingly improbable in a Gaussian
world. Correspondingly, best fits to Lévy stable laws L, systematically favour values of
g~ 1.6 — L8 rather than the Gaussian value p = 2. On the other hand, it has also been
shown that the main property of stable laws, Le. to be stable under aggregation, is not
well obeved by the data, and worsens as the time difference At increases. Correspondingly,
the kurtosis decreases when A ineresaes, Furthermore, the concept of an infinite variance
seemed 8o daunting to many (see in particular [12]) that this possibility is often rejected
on the basis that it is ‘unreasonable’ (the same ‘common sense’ argument was in fact used
against these Lévy stable laws in physics for a long time). As we shall show in the next
section, optimisation problems such as portfolio selection [13] or option hedging can be well
defined even if the underlying process has an infinite variance.

However, we beliewe that a good representation of market Quctuations is the *truncated’
Lévy process. More precisely, the distribution of price variations at very small time scales
(of the order of minutes) can be represented as:

n
prld) = 5'15'::;; (&6 < &%) = exp 5_5' (8 = &) (6]

We have obtained evidence for this power-law behaviour followed by an exponential cut-
off using different techniques (rank ordered histograms, wavelet analysis) on different type
of prices (shares, currencies, ete.) — a detailed account of this study goes bevond the scope
of this paper and will be published elsewhere [14]. Interestingly, for many cases studied
(although some exceplions exist), the value of p is remarkably stable, p =~ 1.6 — L8 (major
currencies [14], CACA0 and MATIF [15]). A similar conclusion was recently reached by
Mantegna and Stanley [16], who studied the SP Index and found a somewhat smaller value
for p = 1.4, again followed by an exponential cut-off deep in the tails. We should also
mention the recent work of Eberlein and Keller [17] which bears many similarities with the
present work. In particular, the distribution deseribing market fuctuations is argued to be
hyperbolic, which has the same exponential behaviour far in the tails, but a slightly different
shape in the center compared to our choiee.

As mentioned above, the existence of a cut-off 67 removes the problem of an infinite vari-
ance, but implies the existence of a crossover time 17 = N°r separating a Lévy dominated
regime followed by a slow ‘creep’ towards the Gaussian [10]. This resolves the problem of
the ‘instability” of the empirical distributions, which becomes manifest for large enough time
differences At. However, for small At, the rescaling of « = —4 allows one to “collapse”

different histograms on a unique curve, which is indesd very vﬂ.rﬁl approximated by a Lévy
distribution L, (u): see Fig. 2. The finiteness of 8 also allows one to rationalize the findings
of Olsen et al. [18] who studied the growth of the moments of § as At is increased. For
different currencies, they find that

E(|8]) o At but E[§2) oc A™™



This is precisely what one expeets for a truncated Lévy process ©: it is not difficult to show
that in this case: N

. Apw for v <

E(|8*) o { % Ll 8

(141%) {I:ﬁ':l”“.ﬂ.ﬂ forv=p (8)

Hence, the results of ref. [18] are in excellent agreement with a truncated Lévy process

assumption, with p = ﬁ = L7. It would be very interesting to understand the ‘microseopic’

origin of such a power-law, and to explain in particular why the value of g seems to be

g0 ‘universal’. The exponential cut-off signals the break down of scale invariance, and is

presumably related to external factors, such as allowed bands for currency Huctuations,

quUObALLONn SUSPenSions, ebe.

IV. OPTIONS IN THE PRESEMCE OF LARCE FLUCTUATIONS
A, Infinite variance

We now tumn to the problem of option pricing and hedging in a ‘dangerous’ world de-
scribed by strongly non-Gaussian fluctuations, where erashes are allowed. As mentioned in
section 2, the very characteristic of Lévy fluctuations is the dominance of the largest events.
Sinee these events are by definition unpredictable, Lévy markets are necessarily incomplele
and perfect bedging is impossible. In order to procesd, let us write down the global wealth
bl anee ."_"A.WE associated with the writing of a call option:

AW|T = Clrg. x.. TYexp(rT) — max(x(T) - z,.0)
b2 el t)exp(r(T — 4))[& — rx(ti)r], (9)

where Cixo, 2o, T') is the price of the call, T is the maturity, xe the striking price, zo = 2(t =
0} and ¢(x, t) the trading strategy. Finally, v the (constant) interest rate and t; = i is the
discrete time. The first term is the gain fom podeeting from the buyer the option price at
t =0, appreciated to time T, The second term gives the potential loss equal to —{z(T) - x,)
if2(T) = x. (i ifthe option is exercised ) and zero otherwise. The thicd term quantifies the
effect of the trading and interest between ¢t = 0 and ¢t =77 the extra variation of wealth W
(due to trading) between ¢ and ¢+ 7 is the result of the Auctuations of the stock (@ix, t)4).
corrected by the fact that wéix, ) has not benefited fram the risk-free interest rate.

We assume that &'s are identically distributed power-law variables ' (8" = o) with in
general different tail amplitudes &' and & for positive (resp. negative] variations.

"Such a behaviour is however less natural to interpret within the context of hyperbolic distribu tions
[17]

'Mote that we assume in the following that price differences and not their logs are power-law
distributed .



Sinee the sum of ‘power-law ' variables is a power law varable, then the distribution of
large losses’, given by Eq. (9], is a power-law:

(Walp(z, )]}
AW [T
with a taill amplitude Wyldi(z,t)] which depends on the strategy ¢. In other words, the

probability that the total loss incurred due to trading the option 8 greater than a certain
acceptable loss level £ is given by:

T
AAWI]G ) 2=apnr oo (10}

_ (Wilete. 1)

PIAW|] < =L) =, L

(11)
which serves as a meaningful measure of sk for g < 2, sinee in this case the varanee of
AW|T, which we shall use in next section, isinfinite. The interesting point about Eq. (11) i3
that the minimization of risk implies that Wy should be as small as possible, independently
of the value of £. This remark suggests a natural and objective prooedure to determine the
hedging strategy: the minimisation of large losses selects ¢7(x, ¢) such that:

oo = (12)
where a funclional minimisation is implied.

Let us study a simple case first, where the trading strategy is trivial ¢ [z, t) = ¢°
(no rehedging), as can be the case in the presence of wery large trading costs. Then
i drexp(r(T = )8 — ra(ti)r] =~ & (=(T) J.'-.J-l'“rT] (when rr < 1 li:I. Larpe losses
OOCUr in two CAses:

e x(t) drops dramatically: then max(xz(T') — z,0) = 0 but there is a loss of
(2(T) = 2ge"™ J* due to hold.

e ot} increases much abovwe iz then the option is exercised, inducing a los of
(=T .} with is partially compensated by the hedge. In this case, ..'L"I.ng‘ =
(1= ¢ )2(T) + ze — ¢xae™ .

The resulting value of Wy is then easy to compute, using Eq. (5):

T
W =[5 e H 4 & M1 97 (13)
The optimal ¢ is thus given, for p > 1, by:
. &* _
TR T S

More generally, one can minimize P{AW | < — L) for values of £ which are not infinitely
large compared to x, — z(t). One finds in this case that:

&<
5 <118 QL 1¢ @“”=O'ﬂlﬂ

& (z.1) = Tel T t]] (14 — b}

[, 2, T

iNate that for r = 0% per year and = 1 day, rv = 2.6 10~

G



Omnee the optimal stategy is known, one can compute the option price by demanding that
the avernge gain of the writer of the option must cover part of his potential losses, the aeder
of magnitude of which precisely being Wy = [EIZ'I-"[-".#[:;&-'IZI: L]]]]# In the simple case where
m=E(8) =10, Clxqg, z.. T is given by:

| x
R A (*"”M;] aw;. (15)
4 is a number of order one, depending on how risk adverse is the writer of the option, fixing
a risk premium which be thought of &8 a bid-ask spread. Note that when m # 0, the term
bk (" (x, 1)) in Eq. (9), representing the average gain (or loss) due to trading, must be
subtracted from the option price. In the Black-Scholes limit, this term exactly compensates
the difference between Eml,ul:n:mxlz:i:IZT] £, 0} and B olmax(z(T) — x..0) [20], and one
recovers the well known result that Clzg, 5., T) is independant of m.

B. Non Gaussian fluctuations of finite variance

Suppose now that the maturity time scale T which is of interest becomes comparable or
larger than the crossover value T — imposed by a finite 8. In this case, the varance of the
wealth variation is a relevant measure of risk (although other ones are possible, such as the
fourth moment, ete.., depending on the weight that one wishes to give to the tails). The
optimal strategy is then such that the variance of AW|T is minimal [19,22,21]:

SE(AWI[T[#]%) _
st " 0 (16)

For a general uncorrelated process (e Elz-ﬁ,-ﬁj] = 0 for i # 7}, the explicit solution of
Eq. (16) is relatively easy to write if /o =0 and r =0 (the generalisation to other cases is
rather more cumbersome ):

(' = e

#'(@t) = [ de'Oan—wry by PETlest) (17)

where Dz, t) = E(87) |=|1 is the ‘local volatility” — which may depend on ozt — and
{0}z gy —si2 7y 18 the mean instantaneous increment conditioned to the initial condition (x,t)
and a final condition (2, T'). The minimal residual risk, defined as R* = E(AW|T[¢"]?) is
in general strictly positive, except for Gaussian Quctuations in the mnlinuous limit + = 0,
where one recovers the usual Blade-Scholes results (R® = 0). For 0 < 7 <« T, however,
the residual risk does not vanish and is given by [19] R® = JDrP(1 - P), where P is the
probability that the option will be exercized at maturity.

Let us stress that our theory, based on Eq. (16), obviously reproduces the Blade-Scholes
results in thecorresponding limit. Indesd, our starting point, the global balanee equation Ea.
(9}, is nothing but the integrated version of the usual instantaneous balance equation used by
Black and Scholes. Note also that approaches related to the minimisation of E{AW|T[#]%)
were considered before in the mathematical literature [22], although the optimal strategy,
Eq. (17), was not given in explicit form.



Mow, in the spirit of the CAPM model, the option price should inelude a risk premionm
proportional to the residual risk, and thus be fved by the equation

E(AW(T) = By E(AW[f[¢7]2) (18)

where the expectation values are caleulaved using the empirieal distribution Pz, t|z', ')

The usefulness of Eqs.  (17,18) comes from the fact that Plx, t)z', ') can be rather
easily reconstructed from empireal data, under the (reasonable ) assumption of uncorrelated
increments. This has enabled us to caleulate numerically the price for real world options —
we give an ‘experimental’ test of our method in Fig3 [23], on the case of Bund options of
short maturties. It s reasonable to assume that on such a liquid market, the risk premium
is amall (i.e. 3= 0). Fig 3 shows that Eq. (18) with 3 =0 reproduces vwery well the market
prices: the regression gives a slope of 0.0993 £ 0.0009, whereas the Black-Scholes formula
(not shown ) gves a slope of 1.02 £ 0.002 (and a rather large interoept), which reflects that
the latter theory systematically misprices out-of-the-money options.

Furt hermore, we can estimate the optimal residual risk, and in particular the dependenoe
of this residual risk on the time lag between rehedging [23]. This is interesting in the presence
of transaction costs, where this time lag must realize a trade-off between costly trading and
increased risk.

(hher interesting cases, such as correlated Gaussian Quetuations (such as the *Fractional
Brownian motion') or option books can be handled with our formalism. We refer the reader
o [19,23] for more details.

V. CONCLUSION

Let us sunmnarize the main messapes of the present paper:

O We believe that power-law Auctuations p o~ L6 — L8 i3 a faithful representation of
the financial market dynamics bul only in a finite interval, below a certain cut-off 4% which
depend on the asset. A theory based on Lévy stable laws is thus expected to be most
relevant for small encugh time scales. For intermediate time scales (weeks), one is right in a
erossover region, where no simple description is possible, and where formulae such a8 Eqgs.
(16,17} are moat uselul.

O In the case where the variance is infinite, the correct way to measure the fuctuations
and thus the risk is through the ‘tail parameter’ W), which is not very hard to handle
analytically thanks to the additivity property Eq. (5). We have shown how option pricing
and hedging could be established through minimisation of Wy, vielding formulae for the
strategy generalising in an interesting way the Black-Scholes recipe. Finally, the same idea
of ‘tail chiseling” as a way to control the extreme uctuations was recently applied to portfolio
selection in [13].

“*This is, again, similar in spirit to the work of Eberlein and Keller [17], except that the optimal
strategy and the residual risk were not considered in their paper.



O More generally, the precise estimate of the residual risk associated with an option
leads to a rational way of Oxing a bid-ask spread around the fair price value, which tums
out to be a very pood estimate of real options, as exemplified in Fig.3.
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FIG. 3. 'Experimental’ prices for Bund call options of different maturities (all less than a
month ) and strikes between January and June 1995, The data has been extracted from LIFFE's
CD-ROM. The coordinate of each point is the theoretical price given by Eq. (18) with @ =1 on
the r axis, and the observed price. P(x, t|2',t') was recontructed using historical data in the period
19492-194 only. The overall agreement is gratifying, and shows that (i) a truncated Lévy process
description is suited to describe (in a first approcimation) the whole ‘implied volatility” surface:
Le., the way the ‘smile’ deforms with maturity and (i) the risk premium is small on very liguid
markets. The inset shows the same results on a larger scale.
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